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Abstract 

As control systems become more com- 
plex. in response to desires for greater 
system flexibility, performance. and re- 
liability the promise is held out that 
artificial intelligence might provide the 
means for building such systems. An 
obstacle to the use of symbolic pro- 
cessing constructs in this domain is 
the need for verification and valida- 
tion of the system. Techniques cur- 
rently in use do not seem appropri- 
ate for knowledge-based software. An 
outline of a formal approach to V&V 
for knowledge-based control systems is 
presented in this paper. 

1 Introduction 

Knowledge-based systems have been 
appIied in areas as diverse as medi- 
cal diagposis. machine tool program- 
ming. and VLSI design. Such appli- 
cations have the common characteris- 
tic that the recommendations of the 
expert systen, can be dealt with in a 
fairly relaxed manner. A doctor re- 
views the diagnosis made by an expert 
system to see if it is sensible. If there 
is some question about it. the diagno- 
sis can be ignored or the system can be 
queried as to the basis for the analysis. 
Time pressure is not severe and control 

of the situation, in particular control of 
the use of the output of the expert sys- 
tem. remains in human hands. With 
many of these systems problems with 
the implementation or design can be 
detected while the software is in use, 
be fixed, and the expert system is still 
be considered sufficiently reliable to be 
useful. 

This casual mode of operation is un- 
acceptable when the knowledge-based 
system is operating as part of au- 
tonomous or semi-autonomous units 
such as machine tool controllers, robots, 
the space station life support module, 
or an aircraft flight control system. In 
such applications it becomes essential 
to have a precise language for speci- 
fying what the knowledge-based sys- 
tem should do, and to have an effective 
procedure for insuring that a partic- 
ular implementation does meet these 
requirements. This is the goal of val- 
idation and verificatior (V%V) proce- 
dures. 

While there are no standard defi- 
nitions for verification or validation 
there is a general understanding that 
verification addresses the issue of whether 
the program specification accurately 
reflects the functions to be performed 
while validatron addresses the ques- 
tion of whether the specifications are 
correctly implemented. The ideas are 
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summarized in the phrases: 

“Is the correct program being built?’ 
- (verification) 

“Is the program built correctly?’ - 
(validation) 

Verification is often largely a man- 
ual process. Specifications are read, 
cross-referenced. and checked for con- 
sistency and completeness. The qual- 
ity of this work is heavily dependent on 
the environment available for develop- 
ing and tracking specifications and re- 
quirements. Validation, on the other 
hand. has traditionally involved a large 
amount of testing. simulation and, to a 
much lesser extent: methods based in 
formal logic for establishing properties 
of a program. 

For most knowledge-based systems, 
however. validation through testing 
and simulation is inappropriate. There 
are two dominant reasons for this. 
First. knowledge-based systems are 
usually most appropriately modeled as 
nondeterministic automata. A charac- 
teristic of nondeterministic machines is 
that identical inputs to the machine 
(in identical states) do not necessar- 
ily yield identical outputs. The ba- 
sis for verification by simulation crum- 
bles. Secondly. expert systems, a sub- 
class of knowledge-based systems, are 
not always expected to give the right 
answer: just as experts do not always 
give the right answer. Thus the no- 
tion of program correctness cannot al- 
ways be formulated in terms of input- 
output behavior. which is the assump 
tion behind testing and simulation as 
well as some formal methods. While 
neither of these properties is unique 
to knowledge-based software, they are 
much more prominant than in, for 
example, operating system software. 
Moreover. these are not characteris- 
tics often found in software which must 
meet rigorous V&V criteria. Control 
logic for aircraft control systems, for 
example, is often designed explicitly in 
terms of finite state machines. Thus it 
is much more amenable to validation 
through testing and simulation. 

In this paper a formal model is pro- 
posed for V&V for knowledge-based 
control systems. Formal means based 
in. mathematical logic. Knowledge- 
based control systems (KBCS) are con- 
trol systems in which symbolic pro- 
cessing methods aretightly coupled to 
standard control algorithms. The ap- 
proach taken is to formulate a struc- 
tural model for the KBCS. This model 
can be viewed as a representation of 
the nondeterministic automaton men- 
tioned above. A logic is then devel- 
oped for asserting and reasoning about 
properties of such structures. Speci- 
fications are interpreted as assertions 
about properties of the model. The 
role of the validation software is to 
prove these assertions. 

2 V&VforKBCS 

Within the domain of real time con- 
trol the anticipated problems of V&V 
for knowledge-based systems are com- 
pounded by the real time aspects of the 
domain. These difficulties are amelio- 
rated somewhat by restricting the do- 
main of application to systems built 
in conformity with a prescribed model 
for KBCSs. This model applies to 
a class of control systems for which 
it appears that the use of knowledge- 
based methods can contribute to sys- 
tem performance and fault tolerance. 
It seems that such domain models may 
be necessary to reduce the computa- 
tional complexity of the formal V&V 
methods to  tractable proportions. 

2.1 V&V Issues and AI 

There are a number of aspects of arti- 
ficial intelligence programs which ap- 
pear to complicate the task  of V&V. 

1. There is often a strong nondeter- 
ministic flavor to A.I. programs. 

2. Time of execution for inference al- 
gorithms can be extremely data 
dependent. 
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3. Interrupt handling is difficult and 
unreliable. There are no stan- 
dard interfaces to other compo- 
nents of the system and no well 
defined methods for resuming an 
interrupted inference process. 

4. Languages typically used for A.I. 
are usually weakly typed. . 

These are not unique characteristics 
of symbolic processing programs. It 
is the conjunction of these properties 
within A.I. programs, together with 
the conceptual complexity of the pro- 
grams, which creates difficulties when 
attempting to base V&V procedures 
upon formal logic. 

2.2 Issues Raised by Real 
Time Applications 

The phrase real time, when applied 
to computer programs, is generally 
used to invoke images of dire conse- 
quences of failure and dismally restric- 
tive time constraints on program ex- 
ecution. This view is not altogether 
untrue, but is is perhaps too imprecise. 
In the context of developing knowledge 
based control systems four aspects of 
real time performance seem to domi- 
nate design and implementation deci- 
sions. 

1. Time constraints on system per- 
formance. and thus implicitly on 
software ezecution. The software 
must be viewed in the context of 
the entire system. Constraints on 
software performance result from 
percolating system requirements 
through an architecture. Inad- 
equate software performance can 
be indicative of an inappropriate 
architecture. as well as an inade- 
quate implementation of the soft- 
ware itself. 

2. Actions have consequences and 
the penalty for not meeting re- 
quirements can be severe. These 
consequences may be economic, 

such as ruining a batch of toilet 
paper. or they may lead to injury 
or loss of life. 

3. The timing of events is deter- 
mined by the system environment, 
not by the programmer. As with 
performance requirements. these 
constraints can result from choices 
concerning the hardware and com- 
munication's architecture as well 
as the original system require- 
ments. 

4. Demands on the system may oc- 
cur in parallel rather than sequen- 
tially. Contention for resources 
will occur in patterns that the 
programmer has not anticipated. 

The real issue here is not some mythi- 
cal intrinsic sluggishness of knowledge- 
based systems. In fact performance, in 
the sense of speed of execution, is often 
adequate for embedded control appli- 
cations. The issue is adding constructs 
to the base language which enable the 
system developer to incorporate tim- 
ing and sequencing constraints, for ex- 
ample, within the KBCS without sac- 
rificing clarity and abstraction. 

3 Knowledge-Based Con- 
trol Systems 

Verification and validation of the im- 
plementation software is a standard re- 
quirement for many control systems. 
Consequently the successful incorpora- 
tion of constructs from artificial intelli- 
gence within the framework of control 
theory requires that there be a method 
for V&V of knowledge-based control 
systems. If methods based in formal 
logic are to be used as the foundation 
for V&V in this domain, it is neces- 
sary to be able to describe, in a precise 
way. what constitutes a well-formed 
knowledge-based control system. 

Traditional control theory deals with 
systems which can be described in 
termsofastatevector, (z l ( t ) ,  ..., zn( t ) )  
where the z,(t) are usually reasonable 
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real-valued functions. The time evo- 
lution of the state is governed by dif- 
ferential. difference, or integral equa- 
tions. Within this framework meth- 
ods have been developed which enable 
designers to address questions of sta- 
bility. coverage, reliability, and per- 
formance among other things. Con- 
trol systems for a wide range of de- 
vices, from toasters to airplanes, have 
been built using these theories. There 
are problems, however, which fall nat- 
urally into the category of control 
but for which these methods appear 
to be inadequate 151. Systems in 
which the state space description in- 
volves discrete, and perhaps nonnu- 
meric. variables fall into this category. 
We such systems hybrid. Hybrid sys- 
tems arise when there is mode selec- 
tion. when switches or limiters are 
used. or when extensive fault manage- 
ment techniques are required. In such 
cases the “mode switching logic”. or 
the ”fault management logic”, which 
constitutes the discrete aspect of the 
control system, is usually constructed 
in a fairly ad hoc manner. 

The theory of knowledge-based control 
systems is meant to be an extension 
of traditional control theory which will 
enable integration of symbolic process- 
ing methods with standard approaches 
to control. while retaining the abil- 
ity to rigorously address questions of 
stability, performance. and reliability. 
The model which has been developed 
is based largely upon work by Wonham 
and Ramadge IS] and will be described 
in detail in a forthcoming paper. The 
value of such a formal domain model, 
from the perspective of V d V  is that 
it enables a formal specification lan- 
guage to be built. The language is com- 
plete in the sense that it completely 
describes this family of control sys- 
tems, and s:atements in the specifica- 
tion language can be readily translated 
to assertions in a modal logic about the 
structure of the implemented KBCS. 

If the modes of a control system 
are thought of as discrete entities 
defining the domain of applicability 
of some control law for a system, 

then the core of the KBCS is the 
mode switching logic which is gener- 
ated by the mode switching supervi- 
sor. The mode switching logic (MSL) 
is a state-transition graph decsribing 
which mode transitions are enables. 
The MSL is generated by the mode 
switching supervisor (MSS), in accor- 
dance with the constraints of the con- 
trol system design. The primary sym- 
bolic processing capability of the sys- 
tem of a KBCS is resident within the 
MSS. A control system may have sev- 
eral MSS. for example at each level of 
a hierarchy 

Thus a typical requirement for a con- 
trol system is that the MSS always 
generates a finite state machine MSL. 
This is a statement in the specifica- 
tion language which becomes an asser- 
tion to be proved about the implemen- 
tation of the KBCS. Another require- 
ment might be that the MSL contain 
no infinite loops. That is, a control 
decision is always reached in every sit- 
uation. 

4 The Approach 

4.1 Overview 

The approach taken was to develop a 
model based upon modal logic which 
encompassed the control structure and 
the semantic content of the KBCS. 
Statements in the specification lan- 
guage could then be interpreted as as- 
sertions to be proved about the formal 
model. The intent is that the speci- 
fication be developed in parallel with 
the KBCS and is refined while the sys- 
tem is being built. The environment 
in which the KBCS is built is based 
upon an expert system shell. RTBA 
(for Real Time Blackboard Architec- 
ture), developed at Honeywell S k R C .  
The developer never has to deal di- 
rectly with the representation used for 
VkV purposes. 
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4.2 Representation of the 
KBCS 

The KBCS is viewed as a family of 
graphs. A given graph in the family, 
corresponds to a “run” of the KBCS. 
It is built by tying together a number 
of graphs representing the knowledge 
and inferences used, much as a truth 
maintenance system builds a depen- 
dency graph. The graphs are a form 
of predicate transition net 121. 

The “tying together” is done through 
a control graph which models the deci- 
sion points and the knowledge sources 
of the system. In RTBA, in its current 
form, control of invocation of knowl- 
edge sources and oracles is represented 
separately from the domain knowledge 
sources. The approach to VElV pre- 
sented here presumes that such a sep- 
aration can be made, although it need 
not be done as explicitly as in RTBA. 

Starting from the control graph of the 
KBCS form the path space of this 
graph consisting of all paths based at 
START. There is an infinite number 
of these paths. Let C denote the con- 
trol graph and P(C) the path space of 
C, where it is understood that ”path” 
means ”path based at START”. Each 
path can be expanded into a form of 
data flow graph representing the types 
of information and rules which are ac- 
tually active when the control proce- 
dure follows the given path. These 
data flow graphs, each of which is a 
member of P(C).  are predicate tran- 
sition nets in the sense Genrich and 
Lautenbach [23. 

A form of modal logic was developed 
for making statements about, and es- 
tablishing properties of P(C),  this very 
large family of graphs. The semantic 
content of the system is represented by 
interpreting the family of graphs as a 
Kripke model of the modal logic. 

4.3 A Logic for Reasoning 
about KBCS 

We have adapted a form of modal 
logic, called computational tree logic [I] 

to support making statements about, 
and proving properties of, this family 
of graphs. The use of modal logics as 
a basis for formal verification methods 
has been proposed by Hoare, Pratt,  
and a number of other researchers. 
This work builds upon their efforts. 

The operators in this logic are built 
to form statements about properties 
of graphs. Examples of modal oper- 
ators are: A meaning for all paths; E 
meaning for Some path; and X mean- 
ing nezttime. 

In the world of formal logic this fam- 
ily of predicate transition nets can 
be treated as a Kripke model of this 
modal logic. A Kripke model, is a 
triple (G, R, INF) where G is a set, R 
is a relation on the set, and INF is a set 
of inference rules. Intuitively G can be 
viewed as a set of possible worlds. it R 
tells which worlds are accessible from a 
given world. INF tells how true state- 
ments in a world are related to true 
statcments in worlds accessible to that 
world. In our case, an element of G is 
a path in the control graph. R is sub- 
set inclusion of paths. INF is the set of 
inference rules for the logical operators 
described above. This model-theoretic 
interpretation provides a way to deal 
explicitly with the semantic content of 
the expert system. The realization of 
the model in term of graphs means 
that many of the computations of in- 
terest become linear algebra calcula- 
tions. 

5 Other Issues 

If validation and verification are con- 
cerns when building a system, it k 
prudent to consider them when build- 
ing the environment within which the 
system will be built. For knowledge- 
based systems this means having well 
defined methods for knowledge acqui- 
sition, including tools for checking the 
consistency and completeness of infor- 
mation. There also needs to be a 
formal language for expressing spec- 
ifications, which supports refinement 
and explanation, much in the spirit of 
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Swartout’s work. Without this type 
of support formal methods have little 
chance of success in practical terms. 

It is well to keep in mind that there 
are often different levels of software 
criticality in a system. For example, 
subsystems of a flight control systems 
might be classified as; life critical, sys- 
tem critical, or mission critical. The 
level of V&V appropriate for a sub- 
system is governed in large part by 
the criticality level of that subsystem. 
A weakness of the approach to VkV 
outlined in this paper is that is does 
not incorporate a mechanism for tai- 
loring the degree of rigor of V&V pro- 
cedures to the level of criticality of a 
the knowledge-based system. 

Intertwined with method for V&V are 
questions about software safety and re- 
liability. The goal of V&V has been to 
insure that software is reliable in that 
the implementation meets the speci- 
fications and is reasonably free of er- 
rors. However techiques for achieving 
reliability and safety in software are 
sometimes at odds with the require- 
ments for testing. It can be difficult 
to test software which has been writ- 
ten to mask faults. It is possible that 
formal methods for V&V offer a solu- 
tion to this impasse. 

It is possible that V&V may actu- 
ally become easier for knowledge-based 
systems than for traditional software. 
As more capability is moved into com- 
pilers through the use of program 
transformation methods, the specifica- 
tions move closer to becoming the pro- 
gram. Much of the work of validation 
may then become a one-time effort of 
insuring the quality of the compiler. 
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